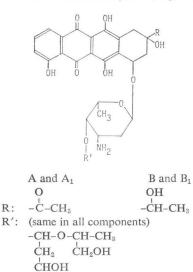
RUBEOMYCIN, A NEW ANTHRACYCLINE ANTIBIOTIC COMPLEX

I. TAXONOMY OF PRODUCING ORGANISM, ISOLATION, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES OF RUBEOMYCIN A, A_1 , B AND B_1

YASUO OGAWA, HIDEO SUGI, NOBORU FUJIKAWA and HIROYUKI MORI

Central Research Laboratory, Ishihara Sangyo Kaisha, Ltd., 3-1, 2-chome, Nishi-Shibukawa, Kusatsu-city, Shiga-ken, Japan

(Received for publication April 1, 1981)


A new antibiotic complex has been obtained from the cultures of an actinomycete, strain FA-1180, isolated from a soil sample collected at lake side of Biwa in Japan.

On the basis of taxonomic studies the producing microorganism is designated as *Actinomadura roseoviolacea* var. *biwakoensis* nov. var. The antibiotic complex belongs to the class of anthracycline glycoside antibiotics. All components form deep red fine needles on crystallization; components are named rubeomycin A, A_1 , B and B_1 . These components exhibit activity against Gram-positive bacteria as well as Yoshida sarcoma cell *in vitro*. These components are also effective on P388 leukemia.

In the course of our screening program for new antibiotics produced by rare actinomycetes, we found that the *Actinomadura* strain FA-1180, isolated from a soil sample collected at lake side of Biwa

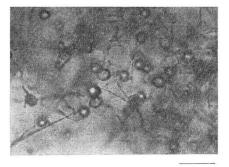
in Japan, produced an anthracycline antibiotic complex which inhibited the growth of Grampositive bacteria as well as Yoshida sarcoma cell *in vitro* but not of Gram-negative bacteria, yeasts and fungi. In addition to its *in vitro* activity the antibiotic increased the survival of CDF_1 mice bearing P388 leukemia. The antibiotic complex was isolated from the fermented mycelial cake of strain FA-1180 and separated into four related components named rubeomycin A, A₁, B and B₁. On the basis of their physicochemical properties, these antibiotics represent new anthracycline derivatives and are related to carminomycin¹⁾ (Fig. 1).

In this paper, the taxonomy of the producing strain, production, isolation, preliminary investigation of physicochemical properties and biological activities of the antibiotics are presented. Fig. 1. Structures of rubeomycin A, A₁, B and B₁.

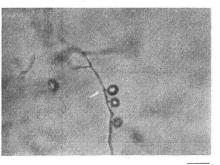
ĊH₃

The chemical structure elucidation of these antibiotics will be reported in the next paper.

Taxonomy of Producing Organism

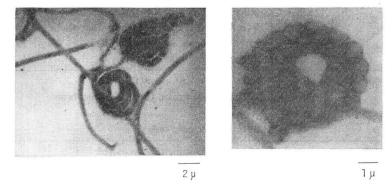

Most of the taxonomic studies on the culture were carried out in accordance with the methods adopted by the International Streptomyces Project²⁾. Additional media recommended by WAKSMAN³⁾

and NONOMURA *et al.*⁴⁾ were also used. Observation of the cultures was made after cultivation for 3 weeks at $27 \sim 28^{\circ}$ C unless otherwise stated. The cell-wall components were analyzed with the pure cell-wall prepared in accordance with the method of YAMAGUCHI⁵⁾. The cell-wall amino acids were detected by amino acid autoanalyzer Yanagimoto LC-5, sugars were detected by GLC-Mass LKB-9000 as their corresponding trimethylsilyl derivatives and stereoisomers of 2,6-diaminopimelic acid were determined by the paper chromatographic methods of HOARE and WORK⁶⁾. The mycelium was cultivated for 7 days at 35°C in the yeast extract-malt extract broth (ISP No. 1).


Morphological Characteristics

The aerial mycelia were well developed, long, straight to wavy and monopodially branched on yeast extract - malt extract agar, oatmeal agar, oatmeal agar with added vitamin B mixture⁴⁾ and inorganic salts - starch agar with added vitamin B mixture (Fig. 2). The spore chains formed tightly closed spirals with $2 \sim 5$ turns; pseudosporangia were also formed (Fig. 3). Electron microscopy revealed that the mature spores were about $0.8 \sim 1.1 \times 0.6 \sim 1.0 \mu$, oval in shape, and with a smooth surface.

Fig. 2. Aerial mycelium of strain FA-1180 (ISP - 4 V, 14 days).



10 µ

Fig. 3. Electron micrograph of strain FA-1180 (ISP - 3 V, 14 days).

Cell Wall Composition

The cell-wall of strain FA-1180 contains *meso*-diaminopimelic acid, glucose, mannose and madurose⁷), but lacks glycine. The aforementioned cell-wall composition indicates the strain FA-1180 is an actinomycete species of the cell-wall type III B⁸).

Cultural Characteristics

The cultural characteristics of strain FA-1180 are shown in Table 1. On most media, orange

THE JOURNAL OF ANTIBIOTICS

Medium	Characteristics
Tryptone - yeast extract broth (ISP No. 1)	GR: fair, pale yellowish flaky growth on bottom of tube, partially light orange to strong reddish orange ring on surface, in contact with glass
	AM: restricted, white to pale pink
	SP: slight, bright reddish orange
Yeast extract - malt extract agar	GR: good, remarkably raised, many folds
(ISP No. 2)	RC: strong orange to deep reddish orange, turning later into deep red
	AM: fair, pink to purplish pink
	SP: slight, strong reddish orange
Oat meal agar (ISP No. 3)	GR: fair to somewhat restricted, flat, spreading
and ISP No. 3 V*	RC: light yellowish brown
	AM: fair, powdery, white to pale pink, sometimes with drops formed on surface
	SP: strong reddish orange
Inorganic salts - starch agar	GR: restricted, penetrating into medium
(ISP No. 4)	RC: light yellowish brown
	AM: scant, white
	SP: none
ISP No. 4 V	GR: good, somewhat raised
	RC: strong reddish orange
	AM: fair to good, pale pink
	SP: strong orange zone around growth
Glycerol - asparagine agar	GR: scant
(ISP No. 5)	RC: light yellowish brown
	AM: none
	SP: none
ISP No. 5 V	GR: good, remarkably raised
	RC: strong reddish orange to deep orange
	AM: restricted, white to pale pink
	SP: slight, bright orange
Peptone - yeast extract - iron agar	GR: fair, raised, many fine folds
(ISP No. 6)	RC: grayish brown to dark grayish brown
	AM: none
	SP: slight, deep red
Tyrosine agar	GR: fair to somewhat restricted, flat
(ISP No. 7)	RC: dull red, turning later into deep red purple
	AM: none
	SP: none
ISP No. 7 V	GR: fair, flat
	RC: deep red purple
	AM: none
	SP: deep red purple

Table 1. Cultural characteristics of strain FA-1180.

VOL. XXXIV NO. 8 THE JOURNAL OF ANTIBIOTICS

	Table 1. (Continued)
Medium	Characteristics
Sucrose - nitrate agar (Waksman No. 1)	GR: fairRC: light orange to strong reddish orangeAM: restricted, white to pale pinkSP: none or slight, reddish orange
Waksman No. 1 V	GR: fair to goodRC: bright orange to deep red purpleAM: fair, pale pink to pale yellowish pinkSP: deep red purple
Glucose - asparagine agar (Waksman No. 2)	GR: scant RC: pale yellow AM: none SP: none
Waksman No. 2 V	GR: fair to good, somewhat raisedRC: bright reddish orangeAM: scant, white to pale pinkSP: bright orange
Bouillon agar (Waksman No. 8)	GR: fair RC: dull red to grayish red AM: scant, white SP: dull red
Glucose - bouillon agar	GR: very good, remarkably raised, many foldsRC: dull red to dark redAM: scant, whiteSP: dull red
Calcium malate agar	GR: scant or none AM: none SP: none
Calcium malate agar V	GR: somewhat restricted, flat, spreadingRC: vivid red purpleAM: noneSP: vivid red purple
Glycerol - calcium malate agar	GR: restricted to scant RC: bright orange AM: none SP: none
Glycerol - calcium malate agar V	GR: fair RC: dull red AM: none SP: none or slight, dull red
Bouillon - gelatin stab	GR: none

Table 1 (Continued)

THE JOURNAL OF ANTIBIOTICS

Medium	Characteristics		
Potato plug (Waksman No. 40)	GR: fair, somewhat raisedRC: strong reddish orange to dull purplish redAM: restricted, white to grayish pinkSP: grayish pink to grayish red		
Löffler's blood serum	GR: fair to somewhat restrictedRC: bright yellowish red, turning later into deep red purpleAM: noneSP: slight, deep red purple		
Skim milk	GR: fair to somewhat restricted, ring present, bright orange to bright reddish orangeAM: noneSP: slight, light orange to bright orange		

Table 1. (Continued)

Symbols: GR, growth. RC, reverse color. AM, aerial mycelium. SP, soluble pigment.

* V: vitamin B mixture added⁴)

Color names were assigned according to "Manual of Color Name", a manual published by Nippon Shikisai Kenkyusho, Tokyo, Japan.

to red or violet vegetative growth developed moderately and aerial mycelia were colored white to pink. The soluble pigments were orange to red or violet and behaved as pH indicators. The growth of this strain was enhanced by the addition of a vitamin B mixture in media.

Physiological Characteristics

Table 2. Physiological properties of strain FA-1180.

The physiological characteristics of strain FA-1180 and its profile of carbohydrate utilization are shown in Table 2 and Table 3, respectively.

		source
Parameter observed	Results	L-Arabinose
Optimum temperature for growth	35∼40°C	D-Xylose
Liquefaction of gelatin	negative	D-Glucose
Hydrolysis of starch	weakly positive	D-Galactose
Milk peptonization	weakly positive	D-Fructose
Milk coagulation	weakly positive	L-Rhamnose
Nitrate reduction	positive	D-Mannose
Production of H ₂ S	negative	D-Lactose
Production of ammonia	negative	Maltose
Melanoid pigment	negative	Sucrose
		And the second se

Table	3.	Carbon	utilization	of strain	FA-1180.
-------	----	--------	-------------	-----------	----------

Carbon source	Response	Carbon source	Response
L-Arabinose	+	Melibiose	+
D-Xylose	+	Raffinose	
D-Glucose	+	Trehalose	
D-Galactose	+	Cellobiose	+
D-Fructose	+	<i>i</i> -Inositol	+
L-Rhamnose	+	D-Mannitol	+
D-Mannose	+	D-Sorbitol	±
D-Lactose	+	Salicin	+
Maltose	+	Inulin	
Sucrose	+		

Symbols: +, utilization. \pm , doubtful utilization. -, no utilization.

The microscopical and cultural studies and cell-wall analysis of FA-1180 indicate that this strain belongs to the genus *Actinomadura*; it closely resembles *Actinomadura roseoviolacea* Nonomura & Ohara. The comparison of cultural and physiological characteristics of strain FA-1180 with *Actinomadura roseoviolacea* Nonomura & Ohara KCC A-0145 was made by simultaneous cultivation and is shown in Table 4.

The differences, however, were not sufficient to designate strain FA-1180 as a new species and it

Medium	Strain FA-1180	A. roseoviolacea KCC A-0145
ISP No.·1	 GR: fair, pale yellowish flaky growth on bottom of tube, partially light orange to strong reddish orange ring on surface, in contact with glass SP: slight, bright reddish orange 	flaky growth on bottom of tube, pale yellow
ISP No. 4	GR: restricted, penetrating into medium	restricted, spreading
	RC: light yellowish brown	light reddish brown
	AM: scant, white	fair, white to pale pink
ISP No. 5 V	AM: restricted, white to pale pink	none
ISP No. 6	SP: slight, deep red	none
Waksman	GR: fair	scant
No. 1 V	RC: deep red purple	deep red purple
	AM: fair, pale pink to pale yellowish pink	none
Waksman No. 7 V	SP: none	vivid red purple
Carbon utilization		
Salicin	+	
D-Sorbitol	+	_
Sucrose	+	_
<i>i</i> -Inositol	+	±
D-Mannitol	+	\pm
Hydrolysis of starch	weakly positive	negative

Table 4. Differences between strain FA-1180 and A. roseoviolacea KCC A-0145.

Symbols: Same as in Tables 1 and 3.

was named *Actinomadura roseoviolacea* var. *biwakoensis* nov. var. This strain has been deposited at the Institute for Fermentation, Osaka, Japan and Fermentation Research Institute, Agency of Industrial Science and Technology, Japan, where it has been assigned the designations IFO 14092 and FERM-P 5155, respectively.

Production and Isolation

The producing organism, A. roseoviolacea var. biwakoensis, was grown in submerged culture in a 50-liter jar fermentor containing 35 liters of a medium consisting of 3% glucose, 1% corn steep liquor, 1% soy bean flour and $0.1\% K_2HPO_4$. The fermentor was inoculated with 700 ml of the seed culture which was prepared in 2-liter flasks each containing 350 ml of the same medium and incubated on a reciprocal shaker at 35°C for $3 \sim 5$ days. Incubation was continued at 35°C for 7 days with aeration at 30 liters per minute and agitation at 250 rpm. The progress of fermentation was monitored by determination of the mycelial volume and the optical density at 496 nm of acetone extracts of mycelium, because the antibiotics were accumulated in the mycelium and not excreted in the filtrate under these culture conditions.

The isolation of antibiotics was accomplished using the general procedure for anthracycline antibiotics, as shown in Fig. 4. The fermentation broth (100 liters) was centrifuged and the antibiotics were extracted from the harvested mycelial cake (5 kg) three times with acetone (10 liters) at 50° C.

THE JOURNAL OF ANTIBIOTICS

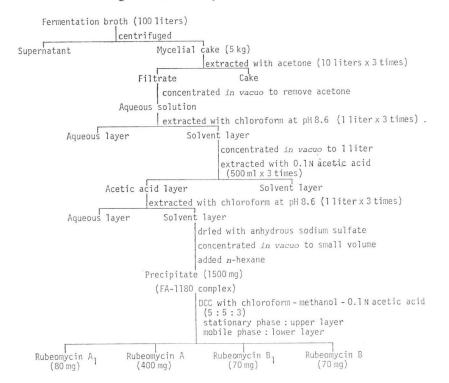


Fig. 4. Purification process of the antibiotics.

The extract was concentrated *in vacuo* to remove acetone and the concentrate extracted three times with 1 liter of chloroform at pH 8.6. The chloroform layer was concentrated *in vacuo* to 1 liter. Then the antibiotics were extracted three times with 0.1 N acetic acid (500 ml). The acetic acid layer was subsequently adjusted to pH 8.6 with a sodium bicarbonate saturated solution and extracted three times with 1 liter of chloroform. The combined extracts were dried with anhydrous sodium sulfate, concentrated *in vacuo* to a small volume, and then a large excess of *n*-hexane was added to precipitate the antibiotics (1500 mg).

Further separation of the complex into its components was achieved by droplet countercurrent chromatography (DCC) using chloroform - methanol - 0.1 N acetic acid (5: 5: 3) as the solvent system. A DCC apparatus containing 300 separation tubes was used and separation was accomplished by the down flow method. The effluents were monitored by silica gel TLC with a solvent system of chloroform - methanol - acetic acid (80: 20: 4). The fractions containing each component were pooled and adjusted to pH 8.6 with the sodium bicarbonate saturated solution. The separated solvent layer was washed with deionized water and dried with anhydrous sodium sulfate, concentrated *in vacuo* to a small volume, and the components were crystallized using solvent systems chloroform - *n*-hexane for A and A₁, and chloroform for B and B₁. Each component was obtained as deep red fine needle crystals.

Physicochemical Properties

All the components of rubeomycin were amphoteric and soluble in methanol, acetone, chloroform and acidic water, but barely soluble or insoluble in ethyl ether, *n*-hexane, petroleum ether and water. The physicochemical properties of the components are summarized in Table 5. The UV and visible spectra of all the components were very similar (Figs. $5A \sim 5D$). The IR spectra were approximately

VOL. XXXIV NO. 8

	A	A ₁	В	B ₁
Melting point °C (dec.)	155~160	174~176	144~146	152~154
Elemental analysis (%)*	F C	FC	FC	F C
C :	58.7 60.1	58.7 60.1	59.7 59.1	58.4 59.1
н:	6.7 6.2	5.6 6.2	6.7 6.5	7.3 6.5
N :	2.0 2.1	1.9 / 2.1	1.7 2.1	1.9 2.1
0 :	31.6 31.6		— 31.5	31.5
Molecular weight (FD-mass)	659	659	661	661
Molecular formula	C ₃₃ H ₄₁ NO ₁₃	$C_{33}H_{41}NO_{13}$	$C_{33}H_{43}NO_{13}$	C ₃₃ H ₄₃ NO ₁₃
$\lambda_{\max} \operatorname{nm} (E_{1 \operatorname{cm}}^{1 \%})$	237 (595)	237 (605)	237 (562)	237 (582)
in MeOH	255 (447)	255 (464)	255 (453)	255 (466)
	292 (141)	292 (161)	292 (133)	292 (137)
	493 (250)	493 (260)	493 (239)	493 (251)
	530 (174)	530 (196)	530 (173)	530 (182)
$[\alpha]^{20}_{\mathbf{D}}$ in CHCl ₃	c + 120.6 c - 0.199	$^{+170.4}_{c 0.053}$	$\substack{+118.0\\c 0.128}$	$\substack{+151.0\\c 0.090}$
Rf value on (a:**	0.57	0.74	0.34	0.47
silica gel b:	0.05	0.11	0.02	0.04
TLC (c:	0.31	0.40	0.23	0.27

Table 5. Physicochemical properties of rubeomycin A, A₁, B and B₁.

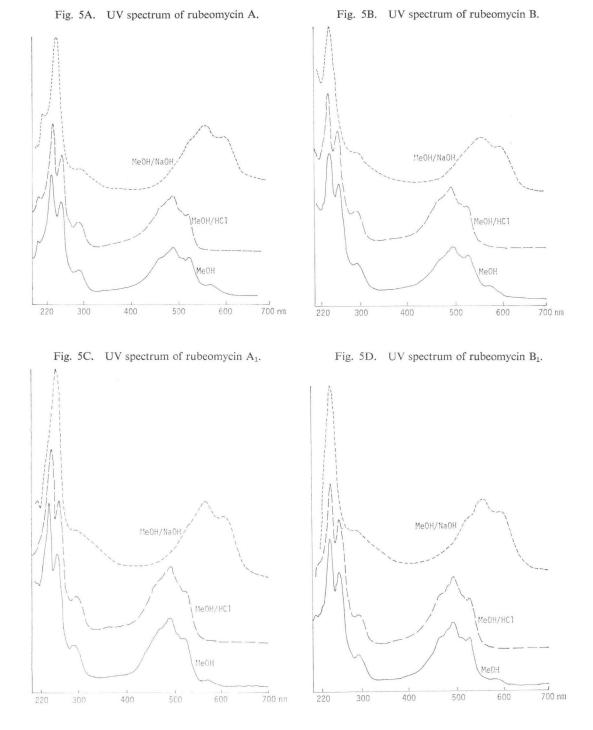
* F: found, C: calculated.

** a: CHCl₃ - MeOH - acetic acid, 80: 20: 4.

b: CHCl₃ - MeOH, 10: 1.

c: CHCl₃ - MeOH - toluene, 7: 3: 3.

the same for all the components, except for the absoption at 1720 cm^{-1} , which indicates, in the spectra of A and A₁ components, the presence of a $-\text{COCH}_3$ group in the hydroaromatic ring; this band is lacking in the spectra of the B and B₁ components (Figs. 6A and 6B). This consideration was supported from the CMR spectra (Figs. 7A ~ 7D). In the CMR spectra of all the components, the signals due to the 33 carbon atoms are present.


Biological Properties

Antimicrobial Activities

Antimicrobial activities of each component of rubeomycin are shown in Table 6. One loopful of test organism suspension was streaked on agar plates containing two-fold dilutions of the antibiotic acetic acid salt. The inoculated plates were incubated for 24 hours at 37°C for bacteria or 7 days at 30°C for fungi and yeasts. Brain heart infusion agar (Nissui) for bacteria and SABOURAUD's agar for fungi and yeasts were used. All the components showed selective antibacterial activity against Gram-positive bacteria, A and A₁ exhibiting higher activity (lower MIC) than B and B₁.

Growth Inhibitory Activities against Yoshida Sarcoma Cell

The acetic acid salts of the antibiotics were dissolved in the Fisher's medium containing 20% of horse serum; dilutions were made with the same medium. These media containing the antibiotics were inoculated with 5×10^4 cells/ml of Yoshida sarcoma and incubated for $2 \sim 3$ days at 37° C. The growth inhibitory activity of the A₁ component was about 10 times larger than that of other components.

Antitumor Activities in Mice

The antitumor activities of the antibiotics were studied by prolongation of the median survival time (MST) of mice bearing P388 leukemia. For testing P388 leukemia was implanted intraperitoneally into CDF_1 mice using 10⁶ cells/animal. Twenty-four hours after the implantation of tumor cells,

Orregion	Minimum inhibitory concentration (mcg/ml)				
Organism	A	A ₁	В	B ₁	
Bacillus subtilis PCI 219	<0.2	<0.2	0.8	0.4	
Bacillus subtilis 17A	0.8	<0.2	1.56	1.56	
Bacillus subtilis 45T	<0.2	<0.2	<0.2	<0.2	
Staphylococcus aureus 209P	0.8	0.4	3.125	3.125	
Staphylococcus aureus Terajima	1.56	1.56	12.5	12.5	
Staphylococcus aureus MS353	<0.2	<0.2	3.125	3.125	
Streptococcus faecalis	1.6	0.8	25.0	25.0	
Micrococcus luteus ATCC 9341	<0.2	<0.2	0.8	1.56	
Escherichia coli NIHJ-JC-2	>100	>100	>100	>100	
Escherichia coli Keio	>100	>100	>100	>100	
Salmonella typhimurium IID 971	>100	>100	>100	>100	
Salmonella typhi 901	>100	>100	>100	>100	
Serratia marcescens IAM 1184	>100	>100	>100	>100	
Proteus vulgaris OX-19	>100	>100	>100	>100	
Candida albicans	>100	>100	>100	>100	
Saccharomyces cerevisiae IFO 1047	>100	>100	>100	>100	
Trichophyton mentagrophytes IFO 5809	>100	>100	>100	>100	
Trichophyton rubrum IFO 9185	>100	>100	>100	>100	
Penicillium chrysogenum IFO 4626	>100	>100	>100	>100	
Aspergillus fumigatus IFO 4057	>100	>100	>100	>100	

Table 6. Antimicrobial spectra of rubeomycin A, A₁, B and B₁.

Table 7. Activities of rubeomycin A, A1, B and B1 against P388 leukemia.

	Dose (mg/kg/day)	MST/range (days)	T/C* (%)	Body weight change (g)
Rubeomycin A	1.0	22.5/10~26	230	-1.3
	0.5	14.5/11~19	156	-0.7
	0.25	16.3/16~17	166	+1.0
	0.125	15.8/16~17	161	+1.5
Rubeomycin A ₁	1.0	$2.8/3 \sim 4$	29	Toxic
	0.5	4.0/4	41	"
	0.25	5.0/5	51	17
	0.125	7.3/6~7	75	"
Rubeomycin B	4.0	23.5/22~25	200	-1.4
	2.0	22.5/22~25	191	-1.7
	1.0	$17.5/17 \sim 22$	179	+0.9
	0.5	16.5/16~18	168	+0.8
	0.25	14.3/14~15	146	+1.7
	0.125	12.8/13~14	131	+2.0
Rubeomycin B ₁	1.0	17.5/17~20	179	-0.8
	0.5	16.5/16~20	168	0
	0.25	14.8/15~16	151	+1.4
	0.125	13.8/14~15	141	+1.1

* T/C: The ratio of median survival time of the treated group divided by that of the control group.

Fig. 6A. Infrared absorption spectra of rubeomycin A and B (KBr).

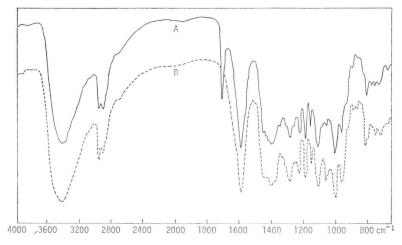
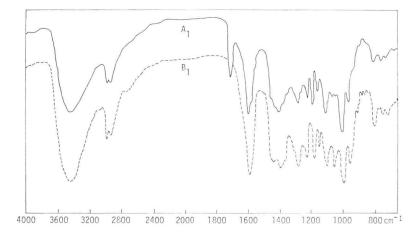
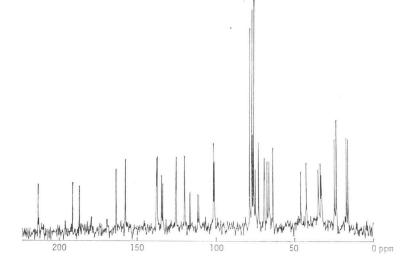
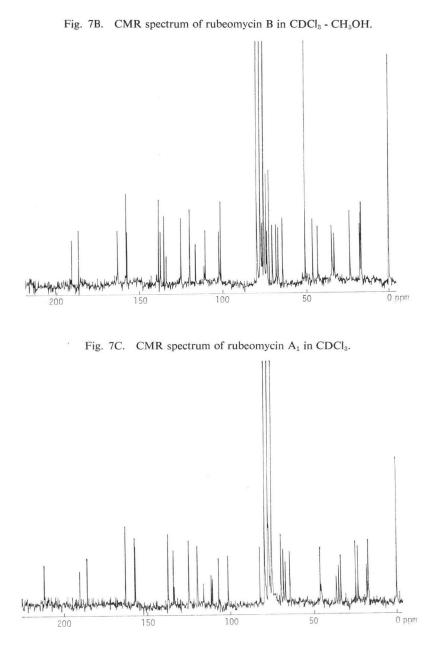
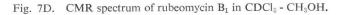
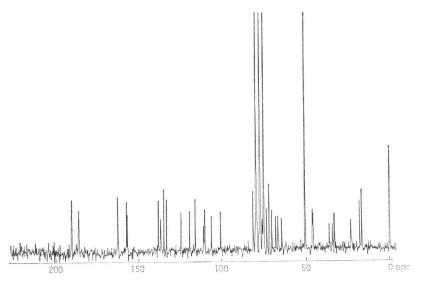


Fig. 6B. Infrared absorption spectra of rubeomycin A_1 and B_1 (KBr).


Fig. 7A. CMR spectrum of rubeomycin A in CDCl₃.



graded doses of the antibiotics dissolved in saline were administered to mice intraperitoneally (0.1 ml per 10 grams of body weight). The treatment was given once a day for 5 days.

The results are shown in Table 7. Rubeomycin A, B and B_1 showed significant prolongation of life with doses in the range of $0.125 \sim 4.0 \text{ mg/kg/day}$, but the A_1 component was more toxic than the others; therefore the prolongation of life with A_1 was not observed under the experimental conditions used.

Acknowledgments

The authors wish to thank Dr. K. MUNAKATA and Dr. N. KATO of Nagoya University for their assistance with CMR spectra and FD-mass spectra measurement and their helpful advice throughout those studies.

Thanks are also due to Dr. A. SEINO of Kaken Chemical Co., Ltd. for providing us with Actinomadura roseoviolacea KCC A-0145.

References

- BRAZHNIKOVA, M. G.; V. B. ZBARSKY, V. I. PONOMARENKO & N. P. POTAPOVA: Physical and chemical characteristics and structure of carminomycin, a new antitumor antibiotic. J. Antibiotics 27: 254~259, 1974
- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Inter. J. Syst. Bacteriol. 16: 313~340, 1966
- 3) WAKSMAN, S. A.: The Actinomycetes. Vol. II. The Williams and Wilkins Co., Baltimore, 1961
- NONOMURA, H. & Y. OHARA: Distribution of actinomycetes in soil. XI. Some new species of the genus Actinomadura Lechevalier et al. J. Ferment. Technol. 49: 904~912, 1971
- YAMAGUCHI, T.: Comparison of the cell-wall composition of morphologically distinct actinomycetes. J. Bacteriol. 89: 444~453, 1965
- 6) HOARE, D. S. & E. WORK: The stereoisomers of α, ε -diaminopimelic acid. 2. Their distribution in the bacterial order Actinomycetales and in certain Eubacteriales. Biochem. J. 65: 441~447, 1957
- LECHEVALIER, M. P. & N. N. GERBER: The identity of madurose with 3-O-methyl-D-galactose. Carbohyd. Res. 13: 451~454, 1970
- LECHEVALIER, M. P. & H. A. LECHEVALIER: Chemical composition of cell as a criterion in the classification of aerobic actinomycetes. Inter. J. Syst. Bacteriol. 20: 435 ~ 443, 1970